
Methods Ecol Evol. 2019;10:1393–1400.	 wileyonlinelibrary.com/journal/mee3	 	 | 	1393© 2019 The Authors. Methods in Ecology and 
Evolution © 2019 British Ecological Society

1  |  INTRODUC TION

Discretized anatomical, behavioural, or life‐history traits previously 
used in phylogenetics, an important form of phenomic data, may be 
crucial for understanding the genetic bases of complex traits (Lee 

& Palci, 2015), uncovering relationships among extinct and extant 
organisms (Gavryushkina et al., 2015), placing fossils for dating mo‐
lecular phylogenies (Jarvis et al., 2014), and elucidating changes in 
morphological disparity through time (Clarke & Middleton, 2008). 
Compared to genomic data, large‐scale phenotyping of organisms 
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Abstract
1. Phenotypic data are crucial for understanding genotype–phenotype relation‐

ships, assessing the tree of life and revealing trends in trait diversity over time. 
Large‐scale description of whole organisms for quantitative analyses (phenom‐
ics) presents several challenges, and technological advances in the collection of 
genomic data outpace those for phenomic data. Reasons for this disparity include 
the time‐consuming and expensive nature of collecting discrete phenotypic data 
and mining previously published data on a given species (both often requiring ana‐
tomical expertise across taxa), and computational challenges involved with analys‐
ing high‐dimensional datasets.

2. One approach to building approximations of organismal phenomes is to combine 
published datasets of discrete characters assembled for phylogenetic analyses into 
a phenomic dataset. Despite a wealth of legacy datasets in the literature for many 
groups, relatively few methods exist for automating the assembly, analysis, and 
visualization of phenomic datasets in phylogenetic contexts. Here, we introduce 
a new r package phenotools for integrating (fusing original or legacy datasets), 
curating (finding and removing duplicates) and visualizing phenomic datasets.

3. We demonstrate the utility of the proposed toolkit with a morphological dataset 
for flightless birds and two morphological datasets for theropod dinosaurs and 
provide recommendations for character construction to maximize accessibility in 
future workflows. Visualization tools allow rapid identification of anatomical sub‐
regions with difficult or problematic histories of homology.

4. We anticipate these tools aiding automation of the assembly and visualization of 
phenomic datasets to inform evolutionary relationships and rates of phenotypic 
evolution.
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presents several challenges. First, phenome assembly and devel‐
opment of analytical tools for phenomic data lag behind those for 
genomic data (Deans et al., 2015). Second, phenomic data are diffi‐
cult to collect, requiring both anatomical and taxonomic expertise in 
assessing homology (Patterson, 1982) and coding variability in traits 
(Lee & Palci, 2015). This problem is exacerbated by the dwindling 
number of expert taxonomists working on anatomical descriptions 
of extant and extinct groups (Kemp, 2015). One way forward is to 
utilize existing phenomic data in the form of published descriptions, 
trait databases or natural history collections (Deans et al., 2015). 
However, a third major challenge in phenomics is converting these 
data sources into computable phenotypes (Burleigh et al., 2013; 
Deans	et	al.,	2015).	Assessing	character	quality	on	a	case‐by‐case	
basis is a rate‐limiting step in phenomics, especially for large (>1,000 
character) datasets (e.g. O'Leary & Kaufman, 2011).

Phenomic datasets can be constructed using either manual or 
automated approaches. Manual approaches involve utilizing trait 
ontologies (e.g. Dahdul et al., 2012) to assign metadata to narrative 
character descriptions, possibly using Phenex (Balhoff et al., 2014). 
Individual phenomes are then concatenated into a phenomic dataset 
(set of taxa and characters), for example using MorphoBank (O'Leary 
&	Kaufman,	2011).	Automated	approaches	use	natural	language	pro‐
cessing to extract characters from text‐based taxonomic descrip‐
tions (Cui, 2012; Endara, Cui, & Burleigh, 2018). Existing approaches 
output ‘raw’ character matrices (Cui, 2012), and it is up to the user 
to identify character states and evaluate the utility and homology of 
proposed characters and character states. Given the wealth of phe‐
nomic data available in the literature (Deans et al., 2015), there is a 
critical need for tools aiding in assembling and evaluating phenomic 
datasets.

Here, we present a pipeline to reproducibly assemble and visu‐
alize phenomic datasets with the goals of making character annota‐
tion faster (through automation) and homology assessment easier 
(through network representation of character description similarity). 
This pipeline is implemented in a new r package phenotools that 
inputs published datasets and outputs a merged phenomic dataset. 
We demonstrate the utility of this pipeline using a newly assembled 
phenomic	dataset	 for	palaeognathous	birds	 (Aves:	Palaeognathae),	
as well as two existing morphological datasets for theropod dino‐
saurs. Finally, we provide recommendations for character construc‐
tion and future directions for phenome assembly.

2  | OVERVIE W OF THE PHENOTOOL S 
PACK AGE

phenotools provides functionality for inputting phenomic datasets; 
merging datasets into a single phenomic dataset based on a common 
set of taxa; annotating characters based on fuzzy text searching/trait 
ontologies; filtering overlapping phenomic characters and taxa (e.g. 
merging taxa into supraspecific terminals); visualizing similarities in 
character description; and outputting phenomic datasets to common 
phylogenetic data formats for downstream analysis (Figure 1).

2.1 | Importing phenomic datasets

Users can input data into phenotools using read.nex in one of 
the three ways, depending on the input file format. First, individual 
NEXUS files (Maddison & Maddison, 2018) are input as is. Second, 
separate data matrices and character lists (as text files) can be read 
in. Third, data matrices can be extracted from within PDF files, al‐
though this feature is experimental and not fully implemented. Users 
may prefer to cut and paste character matrices into other programs 
(e.g. Mesquite), but this can result in user‐generated errors and, we 
believe, not ideal as part of a reproducible, streamlined workflow.

2.2 | Extracting ontologies from character 
descriptions

Anatomical	traits,	like	most	phenotypic	traits,	are	typically	hierarchi‐
cal and comprised of distinct subunit parts (McShea & Venit, 2001). 
However, character statements are not always written to express 
this hierarchy (Figure 2). Our automated approach implemented in 
generate _ ontology constructs a trait ontology (i.e. a controlled 
vocabulary for describing phenotypes) from narrative character de‐
scriptions with hierarchical structure defined by comma‐separated 
terms (Figure 2b). We have also implemented a manual approach in 
read _ ontology that inputs a user‐defined ontology as a text file. 
To link characters to terms in the ontology, we first simplify terms 
using the Schinke algorithm (Schinke, Greengrass, Robertson, & 
Willett, 1996), useful for Latin terms common in anatomical data‐
sets (e.g. ‘humerus’ becomes ‘humer’). Metadata is then associated 
with the characters based on the strongest match (i.e. longest set of 
overlapping characters or terms) between an ontological term and a 
given character (Figure 2b) using traitlink.

2.3 | Finding overlapping characters

Different authors have different ways of writing characters. For 
characters used by subsequent authors that are reproduced verba‐
tim, finding duplicates is straightforward (Ramírez et al., 2007). In 
cases where characters are written in different languages, the pro‐
cess of locating duplicated characters is challenging. We dealt with 
this by using roots in Latinate languages. For languages other than 
English or Latinate ones, identifying duplicate character descriptions 
will still be an issue. Similar characters may also be alternative de‐
scriptions of the same morphology. For example, one author may 
describe a structure as present or absent, while another author may 
describe	more	nuanced	variation	in	shape.	Authors	may	also	differ	
in the taxonomic sample, or in character states and scorings used to 
describe a trait.

To begin to address these issues, we implemented four ap‐
proaches for identifying potential overlapping characters in du-
plicated.nex. The first fuzzy text approach (opt=‘fuzzy’) 
identifies potential matching characters based on similarity in 
characters and character states. Positional terms (e.g. ‘dorsal’), 
white space, punctuation and comments are removed prior to 
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matching, and a range of text distance metrics can be specified 
(e.g. see van der Loo, 2014). For example, method=‘jw’ uses 
Jaro–Winkler distances, or the percentage of matched charac‐
ters between two strings. Parts of character descriptions can be 
further up‐weighted. For example, locators (terms that point to 
a particular feature, such as an anatomical structure) are often 
specified early in character statements and delimited by com‐
mas (Figure 2b). This information can be leveraged by specify‐
ing weighting=c(2,1,1). The second term‐based approach 
(opt=‘terms’) searches the entire dataset to determine word 
frequencies. Common terms are then down‐weighted relative to 
less‐common, anatomical terms (e.g. ‘humerus’). Various commu‐
nity detection algorithms (Csardi & Nepusz, 2006) can be specified 
with the cluster argument to identify groups of similarly worded 

character statements (Figure 2a). The third text‐searching ap‐
proach (opt=“comments”) tests if character statements include 
comments referencing other characters. For example, Figure 2a 
shows three character statements comprising a single cluster of 
duplicated characters, with the original character described by Lee, 
Feinstein, and Cracraft (1997) subsequently modified and used in 
phylogenetic analyses by Bourdon, Ricqles, and Cubo (2009) and 
Worthy and Scofield (2012). The fourth distance‐based approach 
(opt=“traitcor”) determines pairwise correlations between 
characters based on Hamming distances (number of character 
state differences between two characters) for binary characters 
(method=“hamming”) or polychoric correlations (strength of as‐
sociation between two ordinal variables) for multistate characters 
(method=“polychor”; see Supplementary Methods for details). 

F I G U R E  1   Pipeline for phenomic dataset assembly in the phenotools r package. r functions indicated along inner circle in dark blue text. 
Spin‐offs indicate actions that can be performed on the dataset at a given point in the pipeline. Numbers around circle indicate % missing data
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Character correlations are useful because, in addition to similarity 
in character statement terminology, overlapping characters might 
be expected to show similar scores for a set of taxa. Strong cor‐
relations could therefore indicate either logical dependence or 
biologically relevant, functional or developmental dependence 
among	characters	(e.g.	phenotypic	integration).	Assessing	and	in‐
terpreting these alternative scenarios for a set of similar charac‐
ters would be up to the user.

3  | WORKED E X AMPLE:  A PHENOMIC 
DATA SET FOR PAL AEOGNATHOUS BIRDS

After	 converting	 and/or	 downloading	 published	 datasets	 (see	
Supplementary Methods) as NEXUS files, we loaded them into r 
using:

files <- list.files(“datasets/palaeognaths”,
                   pattern = ”nex”)
nexlist <- lapply(files, read.nex)

We then concatenated datasets with:
allnex <- concat(nexlist, taxa = taxonlist)

Since some taxa are subspecies, we chose to use collapse to 
merge subspecies (e.g. Rhynchotus rufescens pallescens) and rename 

some species (e.g. Pterocnemia pennata; see r script available at 
Dryad for details):
final <- collapse(allnex, map = list(“Pterocnemia
pennata” = “Rhea pennata”, “Rhynchotus rufescens
pallescens” = “Rhynchotus rufescens”, method =
“merge”)

Finally, we sorted by taxa using:

final.sorted <- sort.nex(final, by="taxlabels")

The resulting dataset contained 4,333 characters and 122 taxa. 
After	concatenating	datasets,	relabeling	taxa	and	removing	invari‐
ant characters with remove.invar, the dataset contained 2,506 
characters for 122 taxa, with 87% missing data. This process took 
~10 s on 2 GHz Intel Core i7 MacBook Pro laptop with 8 GB of 
RAM.

At	this	point	in	the	pipeline,	we	anticipate	users	will	want	to	ex‐
port clusters of similar character descriptions and begin to address 
character homology issues using:

final.dups <- duplicated.nex(final.sorted,
                            opt = ”terms”)

Clusters of similar character descriptions can be visualized with 
shared terms among characters colour‐coded using the printout 
function (Figure 3b, S1):

F I G U R E  2  Character	similarity	networks	and	character	annotation.	(a)	Anatomy	of	a	character	statement.	Arrows	indicate	two	
approaches for comparing characters: fuzzy text matching of terms (lines without arrowheads) and text searching within characters (lines 
with arrowheads). Network diagrams in gray boxes show connections among characters using different approaches, with thicker lines 
indicating	more	similar	characters.	(b)	Automated	semantic	character	annotation	with	generate _ ontology. Character statements can be 
structured along a continuum, with semi‐structured characters (Clarke, Zhou, & Zhang, 2006) presenting greater opportunity for automated 
phenomic dataset assembly
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printout(final.dups, file=”clusters.html”)

After	manually	assessing	this	output	and	adding	comments	(e.g.	
‘DD 100’ to indicate that a focal character is a duplicate of char‐
acter 100), getcomments can import these annotations into r or, 
alternatively, duplicates can be input as a spreadsheet with columns 
for focal and duplicated characters. Characters can be automat‐
ically merged or dropped (see Supplementary Methods), resulting 
in a clean dataset for downstream phylogenetic or comparative 
analyses:
final.clean <- filter(final.sorted, map="dups.csv")

Finally, we can plot (e.g. alongside a phylogeny; Figure S2):
plot.nex(x=final.sorted, phy=phy)

or export the cleaned dataset as a NEXUS file:
write.nex(final.clean, file=“supermatrix.nex”,
         format=“nexus”)

4  | BENCHMARK

To assess the performance of our method of annotating characters, 
we determined the proportion of characters correctly linked to a 
given body region. For the theropod datasets, 71% of the characters 
in Xu, You, Du, and Han (2011) included words in a trait ontology for 
birds (Baumel & Witmer, 1993), compared to 81% of the characters 
from Brusatte, Lloyd, Wang, and Norell (2014) (Table 1). Between 
57% and 73% of characters were assigned to the correct body re‐
gion across datasets (Table 1). The two theropod datasets differed in 
character annotation accuracy (Table 1), likely because of the richer 
character descriptions in Brusatte et al. (2014), and thus greater po‐
tential for locating important anatomical terms in the trait ontology. 

Several characters from Xu et al. (2011) are currently written with 
little structured information about the precise location of described 
variability. The improved rate of character annotation in the pal‐
aeognath dataset (Table 1) likely stems from differences in the set 
of anatomical terms used to describe crown birds versus theropod 
dinosaurs. To assess the performance of our four methods for find‐
ing overlapping characters, we manually verified whether proposed 
sets of characters were true or false duplicates. The text‐searching 
method had the highest precision, while the fuzzy text‐matching 
method had the highest recall (Table 2). The term‐based approach 
had moderate performance at both precision and recall and outper‐
formed the fuzzy text‐matching approach in its ability to locate du‐
plicates (Table 2). Importantly, the cut‐off for these algorithms can 
be adjusted by adjusting the cut‐off argument to optimize precision 
and recall. See Supplementary Methods for details.

5  | DISCUSSION

Automated	 processes	 for	 phenomic	 dataset	 assembly	 will	 facilitate	
progress towards phenomes for all organisms, although human ex‐
pertise will be needed in error checking and homology evaluation. 
phenotools provides a set of tools and a pipeline for this process 
(Figure 1) that work alongside existing tools. For example, a user might 
form a phenomic dataset from published datasets, generate an ontol‐
ogy, remove potential duplicates and then upload this final dataset to 
MorphoBank (O'Leary & Kaufman, 2011) to make the data accessible 
to other researchers. Programs currently exist to accomplish various 
subtasks in phenomics (Balhoff et al., 2014; Liu, Endara, & Burleigh, 
2015;	Maddison	&	Maddison,	2018;	O'Leary	&	Kaufman,	2011).	A	core	
novelty of our approach is a reproducible pipeline for phenomic dataset 

F I G U R E  3   Visualizing character overlap. (a) Number of clusters with similar character descriptions (based on manual assessment of 
characters), grouped by anatomical region for the palaeognath dataset. (b) Visualization of a highly connected group of characters with 
distinct	‘lineages’	of	similarly	worded	characters.	A	cluster	of	characters	output	with	the	printout function shows colour‐coded terms that 
place groups of similar characters in a given cluster
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assembly	(Figure	1).	Automating	the	phenome	assembly	process	mini‐
mizes error and allows future researchers to retrace the process from 
start (individual NEXUS files) to finish (phylogenetic analyses).

Our network‐based approach facilitates rapid discovery of im‐
portant terms that can be used to modify or build new datasets; 
visualizes clusters of overlapping characters to make it easier for re‐
searchers to identify overlapping characters and assess homology; 
and is flexible in its ability to incorporate different text algorithms 
for character similarity that will be applicable to diverse taxa. The 
rich HTML output with colour‐coded terms produced by printout 
(Figure 3b) locates shared terms among characters, and could facil‐
itate dataset quality control (e.g. identifying overlapping characters 
after concatenation of individual datasets) or aid in the construc‐
tion of new datasets (e.g. by identifying a controlled vocabulary). 
Information about the temporal, logical or ontological relationships 
among characters, as obtained from manual assessment of datasets 
or using phenotools, can also reveal temporal trends in rates of 
character gains and losses over time (Figure S3) and spatial distri‐
bution of characters across related datasets (Figure 3, S5). These 

tools are more of interest in assessing the trends in character use and 
phylogenetic practices, but comparative network analysis using the 
theropod dinosaur datasets (Figure S6) illustrates how these visual‐
ization tools can be used with existing phenomic datasets.

Going forward, we echo the suggestion of Deans et al. (2015) 
that characters be written to maximize computer readability. For 
example, characters written in a hierarchical fashion (see Figure 2) 
make it easier to automatically construct trait ontologies using 
generate _ ontology. We also suggest that, where possible, 
authors avoid acronyms within character or state labels, as well 
as include comments in square brackets to facilitate identification 
of overlapping characters. Our weighted term‐based approach 
captured only 23% of duplicates (Table 1), highlighting the ongo‐
ing need for taxonomic and anatomical expertise in phenomics. 
However, given manual assessment took ~20 min per character 
(Nick	M.A.	Crouch),	even	a	23%	savings	 in	 identifying	duplicates	
will be significant for assembling phenomic datasets going for‐
ward. Part of the reason for low precision is likely that characters 
are written in different languages or use very few terms (Table 1). 

TA B L E  2   Duplicate finding performance

Method False neg. True pos. False pos. Precision TP/(TP + FP) Recall TP/(TP + FN)

Fuzzy text‐matching 318 39 689 5.4% 10.9%

Weighted term‐based search 295a 62b 206c 23.1% 17.4%

Text‐searching 337 20 8 71.4% 5.6%

Distance‐based: Hamming distance 246 111 8,743 1.3% 31.1%

Distance‐based: Polychoric distance 300 57 4,614 1.2% 16.0%

Note: Calculated precision and recall for the palaeognath hindlimb dataset (233 characters, 122 taxa, 86.5% missing data). Precision indicates the pro‐
portion of potential duplicates that are true duplicates (verified manually) and recall indicates the proportion of true duplicates flagged as potential 
duplicates.
aExamples of false negatives: (1) ‘Tibiotarsus, condylus lateralis triangular in shape and separated from condylus medialis by shallow, proximodistally 
narrow incisura intercondylaris: no, yes’ and (2) ‘Tibiotarsus, cranial aspect, relative proximodistal length condylus medialis to minimum proximodistal 
length incisura intercondylaris distal to its rim above the impressio ligamenti intercondylaris: incisura short, less than half length of condylus medialis, 
incisura long, much more than half of length of condylus medialis’. 
bExamples of true positives: (1) ‘Tibiotarsus, condylus medialis with very deep ligamental pit: no, yes’ and (2) ‘Tibiotarsus, medial side of the internal 
condyle: slight depression near anterior margin, deep pit in anterior margin and a groove along the posterior margin’. 
cExamples of false positives: (1) ‘Tarsometatarsus, number of hypotarsal sulci: three, two, one’ and (2) ‘Tarsometatarsus, number of subhypotarsal 
ridges: three or two, one’. 

TA B L E  1   Semantic character annotation performance

Dataset Total characters
Linked to avian 
trait ontology

Correctly anno‐
tated (%)a

Cluster size, mean 
(range)b

Words per character de‐
scription, mean (range)

Palaeognathae 
(this study)

715 652 (91%) 476 (73%) 3.6 (2–20) 10 (2–45)

Brusatte et al. 
(2014)

853 669 (81%) 412 (67%) 4.3 (2–22) 12 (1–83)

Xu et al. (2011) 374 265 (71%) 151 (57%) 3.0 (2–8) 8 (1–34)

Note: Formatted trait ontology of Baumel and Witmer (1993) available at github.com/celiason/phenotools. Character descriptions and character 
states combined in Brusatte et al. (2014) and Xu et al. (2011), whereas these are separate for the palaeognath dataset. Results are shown for charac‐
ter descriptions only. The palaeognath dataset was filtered to include only binary characters and completely scored taxa.
aPercent correctly annotated characters indicate the proportion of characters correctly linked to a given body region. For example, a character of the 
cranium being located with other cranial characters. 
bCluster size refers to the number of characters in a group of similar character descriptions. 
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Richer, more verbose character descriptions should increase the 
chances	of	 finding	potential	 links	between	characters.	As	a	 final	
note, core principles of phylogenetic dataset construction remain 
as a key to phenomic analyses: character independence and mu‐
tually	 exclusive	 character	 states	 (Patterson,	 1982).	 Addressing	
these issues in future dataset construction will limit the necessity 
of duplicate finding functionality in phenotools to evaluate the 
correlations among sets of characters.

Tools for visualizing phenomic data lag far behind those for ge‐
nomic data. Going forward, we plan to enable compatibility with 
other data formats (e.g. NEXML) and improve the input of data matri‐
ces from PDF files (at present, this functionality is experimental and 
does not consistently work with diverse, non‐tabular dataset formats). 
We feel there is a need for a robust phenome browser, similar to that 
available for genomic data (Deans et al., 2015). Desiderata for a pro‐
totype phenome browser include: the ability to compare phenomic 
differences to a reference species, options for highlighting differences 
in phenotypic traits among selected taxa, ‘point‐and‐click’ interaction 
tools for isolating linked sets of characters (e.g. through a web‐based 
application), and ‘clickable’ characters that expand to a grid of pho‐
tos of the labelled structures in different species. We hope that re‐
searchers working in image recognition will focus on challenges with 
automating the identification of bones or other phenotypic traits from 
images, which would constitute a tremendous advance in phenomics 
and bring us closer to the realization of a phenome for all life.
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