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Abstract 
High disparity among avian forelimb and hind limb segments in crown birds relative to non-avialan theropod dinosaurs, potentially driven by the 
origin of separate forelimb and hind limb locomotor modules, has been linked to the evolution of diverse avian locomotor behaviors. However, 
this hypothesized relationship has rarely been quantitatively investigated in a phylogenetic framework. We assessed the relationship between 
the evolution of limb morphology and locomotor behavior by comparing a numerical proxy for locomotor disparity to morphospace sizes derived 
from a dataset of 1,241 extant species. We then estimated how limb disparity accumulated during the crown avian radiation. Lastly, we tested 
whether limb segments evolved independently between each limb module using phylogenetically informed regressions. Hind limb disparity 
increased significantly with locomotor disparity after accounting for clade age and species richness. We found that forelimb disparity accumu-
lated rapidly early in avian evolution, whereas hind limb disparity accumulated later, in more recent divergences. We recovered little support 
for strong correlations between forelimb and hind limb morphology. We posit that these findings support independent evolution of locomotor 
modules that enabled the striking morphological and behavioral disparity of extant birds.
Keywords: locomotor modules, morphological disparity, avian macroevolution

Extant birds (Aves) are among the most speciose and eco-
logically diverse clades of tetrapods. This diversity is re-
flected in the array of locomotor behaviors birds employ: 
birds use their wings and legs to fly, walk, run, climb, swim, 
and dive. Behavioral variation has been linked to a shift in 
limb function and neural control early in the evolution of 
birds that resulted in the simultaneous origin of three sep-
arate functional units, termed locomotor modules (Gatesy 
& Dial, 1996). In the evolution of these modules, the fore-
limb was first co-opted for flight, the hind limb and tail were 
subsequently decoupled from their shared role in terrestrial 
locomotion, and then the tail was integrated into the flight  
apparatus (Gatesy & Dial, 1996). The evolution of these three 
modules in Avialae is well documented in the fossil record 
by musculoskeletal evolution in the avialan dinosaur hind 
limb and tail and shifts in hind limb scaling from non-avi-
alan theropod dinosaurs to crown birds (Allen et al., 2013; 
Clarke & Middleton, 2008; Clarke et al., 2006; Dececchi 
& Larsson, 2013; Gatesy, 1991, 2002, Hutchinson, 2001a, 
2001b, 2002; Hutchinson & Allen, 2009). Locomotor modu-
larity was hypothesized to have allowed birds to evolve novel 
locomotor strategies by differentially elaborating individu-
al modules. Specifically, the morphological and functional 
evolutionary trajectory of each module can be modified in 
different permutations, enabling a wider array of locomo-
tor behaviors in birds relative to their non-avialan theropod  
ancestors (Gatesy & Dial, 1996).

Forelimb and hind limb proportions are far more vari-
able in crown birds than in non-avialan theropod dinosaurs 
(Benson & Choiniere, 2013; Carrano & Sidor, 1999; Gatesy 
& Middleton, 1997; Middleton & Gatesy, 2000; Mitchell 
& Makovicky, 2014). One explanation for this pattern is a 
hypothesized link between limb morphology and ecological 
traits, including flight capabilities and limb use. However, 
establishing this relationship has proven challenging, in part, 
due to the many factors influencing limb morphology, from 
allometric and phylogenetic factors (Doube et al., 2012; 
Kilbourne, 2013; Nudds et al., 2013; Stoessel et al., 2013; 
Wang & Clarke, 2014) to biomechanical factors such as 
maintaining stability and low energetic costs during move-
ment (Stoessel et al., 2013; Zeffer et al., 2003). Additionally, 
some locomotor behaviors influence limb morphology more 
strongly than others, in particular wading or different types 
of aquatic locomotion (Baumgart et al., 2021; Hinić-Frlog & 
Motani, 2010; Wang & Clarke, 2014; Zeffer et al., 2003). 
Thus, broad flight-style categories and aerodynamic variables 
(e.g., wing loading, aspect ratio) can fail to predict forelimb 
morphology and wing shape across large phylogenetic sam-
ples (e.g., Karoullas & Nudds, 2021; Nudds et al., 2007; 
Taylor & Thomas, 2014; Wang & Clarke, 2014, 2015). 
That said, recent multivariate approaches have yielded more 
compelling results: a combination of multiple morphological 
characters across the body correctly predicted discretized cat-
egories of extant bird ecology (Mitchell & Makovicky, 2014), 
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and high-density morphometric data showed how limb shape 
covaries with ecology more strongly than limb size (Orkney 
et al., 2021). In addition to direct links between limb mor-
phology and ecology, the locomotor modularity hypothesis 
(Gatesy & Dial, 1996) predicts a positive correlation between 
variation in limb morphometrics and locomotor disparity 
that has not yet been evaluated.

Evolutionary dynamics of differential elaboration between 
locomotor modules is also poorly known. For example: How 
do limb measurements change when lineages evolve new 
ways of moving? Do limb modules covary due to selective 
pressure on whole-organism performance (see Clarke & 
Middleton, 2008; Heers & Dial, 2015; Orkney et al., 2021)? 
Older comparisons of limb morphology and locomotor 
behavior in extant avian clades usually considered a single 
limb pair or analyzed each limb separately (e.g., Nudds et al., 
2013; Stoessel et al., 2013; Wang & Clarke, 2014; Zeffer et 
al., 2003). Scenarios that can produce covariation between 
locomotor modules, such as cooperative limb function per-
petuated by mutually reinforcing selection or functional 
tradeoffs due to contrasting selection between individual 
limb functions, are of particular interest because they channel 
how locomotor modules can differentially elaborate. Multiple 
examples of cooperative use of forelimbs and hind limbs, spe-
cifically in juveniles that are non-volant, were previously dis-
cussed (see Dial, 2003b; Dial et al., 2015; Heers et al., 2014). 
Cooperative function between limbs, particularly when nego-
tiating 3D terrain, likely played a prominent role in shaping 
avian limb evolution during and after the origin of flight 
(Clarke & Middleton, 2008; Dial, 2003b; Heers et al., 2014).

Despite the potential importance of coevolution between 
locomotor modules in birds, until recently, there have been 
few quantitative comparisons between the forelimb and 
hind limb modules across all birds (but see Orkney et al., 
2021). Rather, studies have considered morphological differ-
ences among different ecological guilds, the effect of flight 
loss on limb evolution within single clades (Livezey, 1988, 
1989, 2003), and comparisons among different locomotor 
behaviors within a lineage (e.g., Hertel et al., 2015; Miles & 
Ricklefs, 1984; Miles et al., 1987; Mitchell & Makovicky, 
2014; Mitsuo, 1955; Norberg, 1979). Other work has 
showed that the ratio of forelimb to hind limb muscle mass 
negatively covaries with ecology between ground dwelling 
and aerial specialists (Heers & Dial, 2015), inertial prop-
erties of the forelimb and hind limb scale differently with 
body mass and individual limb sizes (Kilbourne, 2013), 
forelimbs and hind limbs cooperatively interact during take-
off and landing (Provini et al., 2012; Provini et al., 2014), 
and that island populations tend to possess decreased flight 
muscle mass and longer legs compared to mainland rela-
tives (Wright et al., 2016). Taken together, these examples 
show that potential correlations between limbs should be 
considered when exploring macroevolutionary patterns in 
avian limb proportions, because selective pressures on the 
whole organism may affect differential elaboration between 
modules.

Here, we present an assessment of the evolution of avian 
forelimb and hind limb segments across a large dataset (N = 
2,549 measurements for 1,241 species) of crown birds, with 
increased sampling in previously underrepresented subclades. 
Specifically, we test the following hypotheses about limb 
evolution in birds: (a) limb disparity and locomotor behav-
ior disparity are correlated at the major clade level and (b) 

covariation within hind limb and forelimb modules is stronger 
than that between modules. We first examine morphospace 
occupancy for each limb in each major subclade and inves-
tigate potential relationships among diversity in locomotor 
behavior and morphological evolution of limb segments. We 
predict that larger morphospace sizes will be positively cor-
related with locomotor disparity. We evaluate whether birds 
established their forelimb and hind limb morphospaces early 
in their evolutionary history. Furthermore, we test for poten-
tial evolutionary covariation within and among locomotor 
modules by examining evolutionary rates in limb element 
lengths and phylogenetically informed covariation of segment 
lengths between limbs. If modules are evolutionarily linked, 
we predict similar evolutionary covariation within limbs and 
between homologous elements (e.g., humerus and femur), 
whereas weaker covariation between limbs would support 
differential elaboration between avian locomotor modules.

Methods
Morphometric data set assembly
To investigate the evolution of avian limb morphospace, we 
obtained 2,549 raw lengths (in mm) of forelimb and hind limb 
segments (i.e., humerus, radius/ulna, carpometacarpus, femur, 
tibiotarsus, and tarsometatarsus; see Figure 1) for 1,241 spe-
cies of extant birds from all major avian subclades, as well 
as for 4 recently extinct taxa (see Supplementary Methods). 
Forelimb and hind limb data for 1,121 of these taxa, as well 
as the 4 extinct species, were taken from previous studies 
(Gatesy & Middleton, 1997; Hinić-Frlog & Motani, 2010; 
Middleton & Gatesy, 2000; Mitchell & Makovicky, 2014; 
Nudds et al., 2013). Data for 120 new extant taxa were added 
through measurement of museum specimens to supplement 
underrepresented subclades (e.g., Coraciimorphae N = 30, 
Aequornithia N = 29, and Galloanseres N = 19 specimens; see 
Supplementary Methods). Raw measurements for each limb 
of multiple individuals of the same species were subsequently 
used in comparative analyses to account for measurement 
error, and species means were used to test hypotheses of limb 
evolution (see below). All statistical analyses were carried out 
in R v. 3.4 (R core team, 2017). Graphics were created using 
the R package ggplot2 (Wickham, 2009).

Phylogenetic tree construction
We used a supertree of avian taxa (Burleigh et al., 2015) 
pruned to the taxon set with measurement data to estimate 
the evolution of limb-proportion disparity-through-time, as 
well as to test evolutionary covariation between limbs. We 
employed a modified version of the Burleigh et al. (2015) 
tree that was scaled to absolute time divergence estimates 
in millions of years from a recent genome-based avian phy-
logeny (Jarvis et al., 2014; Riede et al., 2016). We pruned 
the supertree using the R packages ape v. 3.3 and geiger v. 
2.06 to include only taxa that had data from both limb pairs, 
resulting in a 1140 taxon tree (Harmon et al., 2008; Paradis 
et al., 2004). We also used another time-calibrated molecular 
phylogeny (Prum et al., 2015) to test if topology and sam-
pling affected our results, pruning it to a tree comprising 183 
taxa. In cases where the original trees included species that 
were not sampled (6 taxa for Burleigh et al., 2015; 56 taxa 
for Prum et al., 2015), we replaced those taxa with sampled 
members of the same genus. For 6 species from the Prum et al. 
(2015) tree congeneric taxa were not sampled. In these cases 
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we replaced these tips with the next most closely related taxon 
in our dataset according to current phylogenetic hypotheses 
(see Alström et al., 2013; Dufort, 2016; Garcia-Ramirez et al., 
2014; Moyle, 2004; Ramirez et al., 2013; Xia et al., 2016).

Quantifying avian limb morphospace
To visualize avian hind limb and forelimb morphospace, we 
took the species averages of log-transformed limb segment 
lengths. Next, to account for allometric scaling, we computed 
phylogenetic residuals under a Brownian motion (BM) model 
of trait evolution for each log-transformed trait regressed on 
body size. We then calculated relative limb segment lengths as 
the residuals of a phylogenetic regression on log body mass 
using the phyl.resid function in phytools (Revell, 2012). For 
visualization purposes, we conducted separate principal com-
ponents analyses on residual forelimb (three traits) and hind 
limb segment lengths three traits) and visualized each mor-
phospace using PC1 and PC2 (we retained these PCs because 
they accounted for >95% for each limb module; see Figure 2). 
To quantify clade-specific morphospace sizes, we calculated 
the volume of an N-dimensional convex hull circumscrib-
ing species traits (i.e., residual segment lengths; see above) 

using the convhulln function in the R package geometry v. 
0.4.5. Although we originally defined 18 clades, convex hulls 
require at least 3 points for estimating 3-D volumes (for the 
hind limb, forelimb) and 6 points for 6-D volumes (for the 
overall limb morphospace). Therefore, we obtained overall 
limb morphospace volumes for 15 clades and limb-specific 
volumes for 16 clades. These morphospace volumes were 
used in understanding clade-specific patterns of morphospace 
occupancy and in calculating lineage densities, but we did 
not compare volumes directly in comparative analyses (see 
“Testing the locomotor disparity hypothesis” for details and 
additional disparity metrics used in analyses). To determine 
a clade’s uniqueness in morphospace, we determined the 
non-overlapping volume of each clade using the voloverlap 
function of pavo (Maia et al., 2013).

Quantifying locomotor disparity
To characterize clade-specific locomotor disparity, we coded 
each clade for the presence or absence of several different 
locomotor behaviors using life history data in the Handbook 
of the Birds of the World (del Hoyo et al., 1992–2013). In 
total, we identified and scored ten unique forelimb-related 
behaviors and eleven hind limb-related behaviors in each 
clade (see Supplementary Methods). We then summed the 
number of behaviors as discrete integer scores of locomotor 
disparity for each clade. Although birds often perform loco-
motor behaviors considered outside their typical repertoire, 
we only included behaviors commonly used by each clade, as 
determined by descriptions of their life history. Importantly, 
our approach follows Taylor and Thomas (2014) in coding 
taxa (i.e., clades) as a mosaic of multiple locomotor behaviors 
rather than assigning taxa to single locomotor categories (e.g., 
see Baumgart et al., 2021). Caveats of our mosaic approach 
include (a) all locomotor behaviors are treated as functionally 
equivalent (e.g., a clade with hovering and sallying has the 
same locomotor score as a clade with wing-propelled diving 
and soaring) and (b) evolutionary variation at the species level 
may be missed (e.g., if a species loses a locomotor behavior 
specific to its clade). Yet, given the evolutionary scale of our 
question (i.e., we want to know whether locomotor disparity 
is associated with limb morphological disparity at the clade 
level) and the lack of life history data for several of the spe-
cies in our dataset (del Hoyo et al., 1992–2013), we feel our 
approach is warranted.

Testing the locomotor disparity hypothesis
To test our hypothesis that larger morphospace sizes will be 
associated with greater locomotor disparity, we took a phy-
lomorphospace approach (Sidlauskas, 2008). This is because 
expansions in morphospace can be caused either by elevated 
rates of evolution in some clades (i.e., those that utilize a greater 
number of locomotor modes) or differences in mode of evo-
lution that expand morphospace (e.g., morphological inno-
vations associate with different locomotor behaviors). These 
two scenarios can be teased apart analytically by analyzing 
rates of evolution and lineage density, respectively (Benson & 
Choiniere, 2013; Sidlauskas, 2008). Briefly, we reconstructed 
ancestral states for each set of trait residuals using fastAnc 
in phytools (Revell, 2012) and calculated morphological dis-
parity as the sum of Euclidean distances between all adjacent 
nodes and tips of the phylogeny (Sidlauskas, 2008). We then 
divided these morphological branch lengths by phylogenetic 
branch lengths and averaged values for each clade to derive 

Figure 1. Diagrammatic representation of a bird skeleton indicating 
measurements for each limb. Total lengths were obtained for the 
humerus (HUM), radius/ulna (RADULN), and carpometacarpus (CMC) 
segments for the forelimb, and the femur (FEM), tibiotarsus (TBT), and 
tarsometatarsus (TMT) segments for the hind limb. Species visualized is 
the rock dove (Columba livia).
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clade-wise estimates of evolutionary rate. This approach con-
veniently provides single rate estimates for the fore and hind 
limb, rather than an 3 × 3 rate matrix for each, as in a multi-
variate BM model. To calculate lineage densities, we divided 
the sum of morphological branch lengths within a clade by 
its morphospace volume (Sidlauskas, 2008). Since limb dis-
parity calculated as the sum of morphological branch lengths 
is potentially sensitive to the number of lineages in a clade 
(Sidlauskas, 2008), we also calculated limb disparity as the 
mean pairwise Euclidean distances among lineages in mor-
phospace (Foote, 1993), a metric that is independent of sam-
ple size. We finally tested for relationships between response 
variables (morphological disparity, evolutionary rate, lineage 
density) and locomotor scores using phylogenetic generalized 
least squares (PGLS) multiple regressions implemented in the 
R package phylolm (Ho & Ané, 2014).

While our phylomorphospace approach takes into account 
branch lengths, clade age and species richness could also 
influence our results. For example, if limb morphology is 
evolving by a BM process, then we would expect a positive 
relationship between limb disparity and clade age. Thus, we 
wanted to account for these covariates in our analyses. We 
used stepwise multiple regression to determine the best-fitting 
model based on Akaike information criterion (AIC) scores. 
For the PGLS analyses, we pruned the Kimball et al. (2019) 
time-calibrated tree by collapsing the 18 major clades into 
individual terminals (see ESM for results using the Prum et al. 
[2015] tree). We natural log-transformed response variables 
prior to regression and assessed normality of residuals with 
quantile-quantile plots in R. To assess the effect of potential 
outliers, we removed influential taxa and re-fit PGLS models 
in the influ_phylm function of sensiPhy (Paterno et al., 2018).

Understanding the tempo and mode of evolution 
of avian limb traits
We evaluated whether birds established their morphospace of 
limb dimensions early in their evolutionary history, compared 

to expectations under a diffusive, BM model. Following 
Cooney et al. (2017), we first estimated ancestral states of 
relative limb segment lengths using fastAnc (Revell, 2012). 
We then divided the tree into 1-My time bins and, for each 
bin, calculated disparity as the mean Euclidean distance 
among lineages present at that time (Foote, 1993). We calcu-
lated these disparities for each limb module separately (e.g., 
among humerus, radius/ulna, and carpometacarpus relative 
lengths for the forelimb module). To test whether disparities 
were higher or lower than expected by chance, we simulated 
multivariate BM evolution 100 times with mvSIM (Clavel et 
al., 2015) and re-calculated disparity-through-time curves for 
each simulated dataset. We then determined the 95% confi-
dence interval with the quantile function in R. To compare 
forelimb and hind limb disparity trends, we determined dif-
ferences in disparity for each time bin and tested whether this 
difference fell outside the 95% CI of the difference calculated 
from trait simulations (see Dryad for R code).

We further tested if evolution in one limb is correlated with 
evolution in the other by estimating evolutionary rates and 
covariances among our six residual segment lengths using the 
ratematrix R package (Caetano & Harmon, 2017). Since these 
traits are all expected to covary strongly with body size, we also 
analyzed raw segment lengths with log body mass included (N = 
7 traits). To statistically compare rates and covariances, we calcu-
lated pairwise differences between them and computed Bayesian 
P values as the proportion of the posterior sample overlap-
ping zero, using the helper function pMCMC in MCMCglmm 
(Hadfield, 2010). We adjusted p values for multiple tests with the 
false discovery rate metric with the p.adjust function in R.

Results
Limb morphospace comparisons
Forelimb morphospace was twice as large as hind limb mor-
phospace (0.176 log mm3 vs. 0.061 mm3; Figure 2). Regions 
of morphospace unique to particular clades comprised a 

Figure 2. Avian limb morphospace. Principal component axes representing >95% variation in relative limb element lengths for the forelimb (A) and 
hind limb (B). Arrows represent PC loadings, with labels corresponding to limb segments (Humerus: HUM; Radius/Ulna: RADULN; Carpometacarpus: 
CMC; Femur: FEM; Tibiotarsus: TBT; Tarsometatarsus: TMT). Points represent mean values for species colored by clade. Silhouettes represent taxa that 
occupy unique positions in morphospace.
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smaller proportion of total hind limb variation than in the 
forelimb, as clades overlapped more in hind limb morpho-
space than in forelimb morphospace (Figure 2). Most clades 
had larger hind limb than forelimb morphospace volumes 
(12/16, 75%), with a few notable exceptions: Strisores 
(nightjars, hummingbirds, and swifts; 0.015 vs. 0.004 
log mm3) and Paleognathae (tinamous, “ratites”; 0.044 
vs. 0.0006 log mm3; Figure 2). Strisores, Aequornithes, 
and Paleognathae dominated unique forelimb morpho-
space (0.055 log mm3; 97.3% of unique volume) due to 
a combination of shorter humeri (hummingbirds, swifts, 
treeswifts, and penguins), longer carpometacarpi (hum-
mingbirds, swifts, and treeswifts), and shorter carpometa-
carpi (ostriches, tinamous, and rheas) relative to all other 
birds (Figure 2A). Aequornithes (including loons, petrels, 
penguins, storks, herons, cormorants) occupied the majority 
of unique hind limb morphospace (0.012 log mm3, 92.7% 
of unique volume) due to longer tibiotarsi in loons and the 
some procellariids such as the great shearwater (Puffinus 
gravis), as well as longer tibiotarsi and shorter tarsometarsi 
in penguins (Figure 2B).

Locomotor disparity hypothesis
Overall limb disparity (Figure 3A) and hind limb dis-
parity increased significantly with locomotor dispar-
ity (Supplementary Figure S3D), whereas forelimb 
disparity was not significantly related to locomotor dis-
parity (Supplementary Figure S3B) but instead increased 
significantly with species richness and clade age (Table 1). 
Evolutionary rates were not significantly related to loco-
motor disparity for either locomotor module (Figure 3B, 
Supplementary Figure S3B,E; Table 1). Lineage densities 
were significantly lower in clades with higher locomotor 
disparity for both limbs analyzed together (Figure 3C), but 
the relationship was not significant when limb modules were 
analyzed individually (Supplementary Figure S3, Table 1). 
Results were congruent using an alternative disparity metric 

that is less sensitive to sample size (mean pairwise distance 
[MPD]), with clade age explaining a significant proportion 
of variation in forelimb disparity, and species richness and 
locomotor disparity each explaining a significant proportion 
of hind limb disparity (Table 1). The relationship between 
overall limb disparity and locomotor disparity was not sig-
nificant using the MPD disparity metric, but instead clade 
age explained a significant proportion of variation in over-
all limb disparity (Table 1). These results were robust to an 
alternative phylogeny (Supplementary Table S3) and removal 
of potential outlier taxa (Supplementary Table S4). Eight 
clades had both larger hind limb morphospace and higher 
locomotor scores than the forelimb. Of these, Aequornithes 
(“waterbirds”) had the highest locomotor score in both the 
forelimb (locomotor score = 6) and hind limb modules (loco-
motor score = 7; Supplementary Figure S3). Only one clade 
had both a higher forelimb locomotor score and forelimb 
morphospace size than in the hind limb: Strisores (forelimb 
locomotor score = 5, morphospace size = 0.014 log mm3; 
Supplementary Figures S1–S3).

Tempo and mode of avian limb segment evolution
Temporal disparity analyses showed contrasting evolution-
ary patterns for the accumulation of disparity in the fore-
limb and hind limb (Figure 4). Forelimb disparity was greater 
than expected under a BM model early on in avian evolution, 
whereas hind limb disparity did not differ from the pattern 
expected under BM (Figure 4). Forelimb and hind limb dis-
parity curves were similar after excluding paleognaths from 
the analysis (Supplementary Figure S7). Multivariate rate 
analyses showed significantly stronger covariation within the 
forelimb than within the hind limb or among limb modules 
(Figure 5). Evolutionary rates were also higher in forelimb 
traits than in hind limb traits, with the exception of the tar-
sometatarsus, which was evolving faster than all other limb 
traits (Figure 5). Rates of evolution were similar for stylo-
pod elements (humerus and femur). Within limb evolutionary 

Figure 3. Correlated evolution of limb disparity and locomotor disparity in birds. (A) raw morphological disparity (sum of morphological branch lengths) 
increases with locomotor disparity (number of distinct locomotor modes in a clade; p = .049). (B) Evolutionary rates did not covary with locomotor 
disparity (p = .66). One example of a case where we would expect a positive relationship between these variables is if the evolution of novel locomotor 
behaviors leads to relaxed selection on limb morphology that translates into greater rates of limb evolution. (C) Lineage density was lower for clades 
with greater locomotor disparity (p = .03). This is expected if diverse clades partition morphospace through innovations associated with different 
locomotor (or foraging) modes. Size of points corresponds to log number of species in the clade. Outliers and focal clades labeled. Cartoons illustrate 
different scenarios, with color of circles representing novel locomotor modes and position of circles corresponding to a particular morphology. Shaded 
regions are linear model fits for visualization purposes only (see Table 1 for statistical output).
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covariation was expectedly higher than between limb covaria-
tion, with one exception: tarsometatarsus-radius/ulna covari-
ation was similar to femur-tibiotarsus covariation (Figure 5). 
As expected, all limb measurements were significantly cor-
related with body mass (Supplementary Figure S5).

Discussion
Forelimb morphospace is objectively larger than 
hind limb morphospace
Different patterns of morphospace distribution were seen 
in the forelimb and hind limb of extant birds. Specifically, 
hind limb morphospace was roughly half the size of forelimb 
morphospace, but individual clades tended to occupy larger 
areas and overlapped more (Figure 2; see Supplementary 
Methods). In contrast, forelimb morphospace showed a 
larger fraction occupied by single clades (Figure 2). Unique 
regions of limb morphospace were dominated by taxa that 
display more specialized locomotor behaviors. For example, 
the largest areas of unique forelimb morphospace were occu-
pied by taxa known for emphasizing aerial locomotion over 
terrestrial locomotion, including hummingbirds and swifts 
(Strisores clade), swallows (Passeriformes clade), and alba-
trosses (Aequornithes clade). These taxa clustered in three 
separate regions: these Strisores possess long carpometacarpi 
and short humeri, swallows show long radii/ulnae and short 
humeri, and albatross display short carpometacarpi and inter-
mediate humeri and radii/ulnae (Figure 2A). Each of these 
taxa exemplifies notably different flight styles, namely “hum-
mingbird-style” flight in hummingbirds, continuous flapping 
in swifts and swallows, and dynamic soaring in albatross 
(Bruderer et al., 2010; del Hoyo et al., 1992–2013). Unique 
forelimb space in Strisores and swallows was linked to 

maneuverability (Middleton & Gatesy, 2000). For Strisores, 
this may be due to their unique flight styles and increased area 
for attachment of the primary remiges (Middleton & Gatesy, 
2000; Savile, 1950). In the case of albatrosses, elongate pro-
portions in the humerus may be due to stability required in 
dynamic soaring (Middleton & Gatesy, 2000).

Flightless paleognaths (ratites such as ostrich and emu) and 
flightless wing-propelled divers such as penguins and the great 
auk (Pinguinus impennis) also occupied unique forelimb mor-
phospace, owing to proportionally longer humeri than other 
taxa. These two areas are not, however, overlapping: flightless 
paleognaths possess shorter distal wing segments, whereas 
wing-propelled divers have shorter radii/ulnae (Figure 2A; 
also see Middleton & Gatesy, 2000; Wang & Clarke, 2014). 
Shortened distal wing elements are a common feature of 
flightless taxa, although paleognaths take this trend to an 
extreme (Livezey, 1988, 1989, 2003; Middleton & Gatesy, 
2000). Proportionally shortened intermediate wing elements 
appear linked to efficient wing-propelled diving in volant and 
flightless divers (Livezey, 1989; Middleton & Gatesy, 2000). 
In penguins, the humerus makes up proportionally more of 
the forelimb than in volant wing-propelled divers, potentially 
due to flight loss. From a functional perspective, proportion-
ally shorter distal wing elements aid in moving wings through 
water, a comparatively denser medium than air (Storer, 1960). 
Waterbirds (clade Aequornithes) were previously shown to 
occupy a large area of unique forelimb morphospace (Wang 
& Clarke, 2014). This unique morphospace is reduced in 
our sample to only include penguins and albatrosses, due to 
increased taxonomic sampling in Galloanserae (gamebirds), 
Mirandornithes (grebes and flamingos), Gruiformes (cranes, 
rails, and allies), Otidimorphae (bustards and cuckoos), and 
Charadriiformes (shorebirds such as gulls, auks, and coursers).

Table 1. Results of phylogenetic generalized least squares analyses testing the relationship between locomotor disparity and clade-specific limb 
morphological disparity and rate metrics in a phylomorphospace context.

Module Response Predictors Coef. ± S.E. t p Partial R2 AICc w 

Forelimb Sum morph. br. len. ln richness 1.10 ± 0.22 5.03 <.01 0.62 0.85

ln clade age 2.65 ± 0.91 2.92 .01 0.31

Mean pairwise dist. ln clade age 1.70 ± 0.74 2.32 .04 0.16 0.98

Lineage density ln richness −1.43 ± 0.68 −2.12 .05 0.24 0.99

Evolutionary rate ln clade age 1.43 ± 0.84 1.69 .11 0.15 0.98

Hind limb Sum morph. br. len. locom. score 0.27 ± 0.13 2.16 .05 0.23 0.85

ln richness 0.74 ± 0.28 2.64 .02 0.33

Mean pairwise dist. locom. score 0.15 ± 0.04 3.73 <.01 0.55 0.85

ln richness −0.56 ± 0.12 −4.59 <.01 0.60

Lineage density ln richness −0.69 ± 0.50 −1.37 .19 0.11 0.99

Both Sum morph. br. len. locom. score 0.17 ± 0.08 2.16 .05 0.25 0.50

ln richness 0.60 ± 0.29 2.06 .06 0.23

ln clade age 1.32 ± 0.89 1.49 .16 0.10

Mean pairwise dist. ln richness −0.23 ± 0.13 −1.76 .10 0.17 0.87

ln clade age 1.55 ± 0.54 2.85 .01 0.30

Lineage density locom. score −0.35 ± 0.14 −2.44 .03 0.38 0.94

ln clade age −4.99 ± 2.87 −1.74 .11 0.11

For each model, the most parsimonious set of predictors are presented (significant predictors in bold). Variables were removed in a bidirectional stepwise 
fashion based on AIC values with phylostep (Ho & Ané, 2014). Partial R2 values calculated by comparing model with and without that predictor 
using R2.lik (Ives, 2019). AICc weights show reduced model support (see Supplementary Table S2 for model selection). Results were robust to outliers 
(i.e., all results for locomotor score that were significant remained significant after running influ_phylm, and vice versa for non-significant results; see 
Supplementary Table S4). Time-calibrated phylogeny of Kimball et al. (2019) was used in analyses.
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In the hind limb, Aequornithes dominated unique areas 
of morphospace due to long tibiotarsi (in loons) and long 
tibiotarsi paired with short tarsometatarsi (in penguins). 
Grebes, a convergent clade of specialist foot-propelled divers, 
approached loon morphospace but do not possess such elon-
gate tibotarsi. Although not included in these analyses, extinct 
flightless foot-propelled diving hesperornithiform birds from 
the Cretaceous occupied unique hind limb morphospace typ-
ified by an extremely long tibiotarsus (Gatesy & Middleton, 
1997). More elongate tibiotarsi support extensive distal hind 
limb musculature in foot-propelled diving loons, grebes, and 
Hesperornithiformes, enabling efficient aquatic propulsion 
(Clifton et al., 2018). Penguins also occupy a unique region 
of hind limb morphospace characterized by an extremely 
abbreviated tarsometatarsus (Gatesy & Middleton, 1997). 
Other taxa approach this space, consisting of taxa that pri-
marily locomote using their wings, including fregatids, some 
hummingbirds and swifts, some parrots, and kingfishers 
(Gatesy & Middleton, 1997). In contrast to penguins which 
are accomplished walkers, most of these taxa excluding some 
parrots rarely locomote on land, and some are nearly inca-
pable of walking (Le Maho & Dewasmes, 1984). As with 
foot-propelled divers and elongate tibiotarsi, the evolution of 
more abbreviate tarsometatarsi in wing-propelled divers and 

taxa that emphasize perching over walking indicates that cer-
tain locomotor behaviors might have consistent proportional 
signals, but may not be detected in analyses that examine all 
of avian diversity. Terrestrial and wading taxa show a similar 
effect: flamingos are waders that occupy unique morphospace 
due to elongate tarsometatarsi and short femora. Wading 
long-legged taxa such as stilts and avocets, the saddle-billed 
stork (Ephippiorhynchus senegale), as well as more terrestrial 
species including the secretary bird (Sagittarius serpentarius) 
and pratincoles, also approach this unique region of morpho-
space. Going forward, examining intra-clade evolution fol-
lowing the origin of novel locomotor behaviors might clarify 
this pattern, as well as other potential associations between 
limb disparity and behavior.

Limb morphospace and the acquisition of novel 
locomotor modes
We found that locomotor disparity and limb disparity are 
positively correlated across birds for both the combined 
(Figure 3A) and hind limb data sets (Supplementary Figure 
S3D, Table 1). However, this relationship was not found 
for the forelimb. This pattern could result from either of 
two evolutionary processes: (a) elevated rates of morpho-
logical evolution in clades with more locomotor modes or 

Figure 4. Accumulation of avian limb disparity over time. Solid lines show limb disparity calculated over different time bins for forelimb (red) and hind 
limb relative segment lengths (blue), based on the Burleigh et al. (2015) tree topology (N = 1,140 species). The x-axis represents time, starting at the 
tips of the phylogeny and ending at the root. The y-axis represents mean disparity (pairwise Euclidean distances) calculated in 1-My time bins. Dashed 
lines represents 95% confidence intervals for null disparity curves estimated by 100 Brownian motion simulations. Segments at the bottom indicate 
regions of time over which forelimb disparity was significantly higher than hind limb disparity (see Methods for details).
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(b) acquisition of new locomotor modes enables explora-
tion of novel regions of limb morphospace (e.g., Figure 
2B). Phylogenetic regression analyses suggest that rates of 
limb evolution are similar across clades with simple and 
complex locomotor behaviors (Figure 3B, Supplementary 
Figure S3B,E, Table 1; all p > .05). However, we found 
that clades with more locomotor behaviors are less closely 

packed in morphospace, showing significantly lower lin-
eage densities in overall limb morphospace (p < .01; Figure 
3C) and significantly higher mean pairwise distances in 
hind himb morphospace (p = .03; Table 1). Together, 
these findings suggest that the evolution of new locomo-
tor modes has allowed lineages to exploit new regions of 
hind limb morphospace (e.g., Baumgart et al., 2021; Falk  

Figure 5. Evolutionary rates and covariation of relative limb segments in birds. Evolutionary rate matrix for three relative forelimb segment 
lengths: humerus (HUM), radius/ulna (RADULN), and carpometacarpus (CMC), and three hind limb segments: femur (FEM), tibiotarsus (TBT), and 
tarsometatarsus (TMT). Ellipses in lower off-diagonals display recovered evolutionary relationships among traits using ratematrix. Histograms of 
Brownian evolutionary rates (σ2) are shown on the diagonals (black histograms), and histograms of covariances are shown on the upper off-diagonals 
(gray histograms). Statistical comparisons were made between evolutionary rates and covariances by calculating Bayesian p values in MCMCglmm 
(Hadfield, 2010), accounting for multiple tests with false discovery rate p value adjustment. Small circles indicate significance of comparisons–any two 
rate (or covariance) histograms sharing similarly colored circles are not significantly different from each other (e.g., relative tarsometatarsus length is 
evolving significantly faster than femur length, and tibiotarsus-tarsometatarsus covariance is not significantly different from covariation between the 
radius/ulna and carpometacarpus). Note: only among-rate and among-covariance comparison can be made, as this is how we conducted significance 
testing.
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et al., 2021; Orkney et al., 2021). By contrast, clade differ-
ences in forelimb disparity are primarily a function of clade 
age and species diversity (Table 1). These findings lend sup-
port to the hypothesis that locomotor modularity enabled 
more behavioral options for living birds. The recovered pos-
itive relationship between hind limb morphological dispar-
ity and locomotor disparity is intuitive, but interesting in 
light of the fact that consistent associations between limb 
morphometrics and ecology in birds have largely proved elu-
sive (Shatkovska & Ghazali, 2020), outside of some wading 
and diving taxa (Hinic-Frlog & Motani, 2010; Stoessel et 
al., 2013; Wang & Clarke, 2014; Zeffer et al., 2003). This 
may be due, in part, to differences in how morphological 
disparity relates to behavioral disparity between the fore-
limb and hind limb modules (Table 1), or that some previ-
ous studies assigned taxa to single ecological (e.g., arboreal, 
swimming, terrestrial) or flight style categories (e.g., contin-
uous flapper, dynamic soarer; e.g., Baumgart et al., 2021). 
Instead, our approach codes taxa as a mosaic of multiple 
locomotor characteristics rather than singular classifications 
(see Taylor and Thomas [2014] for another example of this 
approach). Continued use of multivariate methods will con-
tinue to be a valuable strategy for testing hypothesized eco-
morphological patterns (e.g., Mitchell & Makovicky, 2014, 
Orkney et al., 2021) and studying morphological integra-
tion, a grand challenge in comparative vertebrate morphol-
ogy (Danos et al., 2022). One caveat of our approach of 
counting clade-specific locomotor behaviors is that it treats 
all locomotor behaviors as functionally equivalent; for 
example, clades that used hovering and soaring would have 
the same locomotor score as a clade that uses wing pro-
pelled diving and sallying. Future analyses comparing limb 
morphological variation and locomotor behavior disparity 
could interrogate this relationship at the species-level in a 
phylogenetic context (e.g., using Markov models and multi-
variate discrete variables).

The multifunctional nature of avian limbs may be a major 
obstacle in recovering consistent associations between limb 
morphology and locomotor behavior (see Stoessel et al., 
2013). Anatomical structure must address multiple functional 
demands, which can prevent the evolution of an optimum mor-
phology for a particular function (Wainwright et al., 2005). 
A role for multifunctionality and behavioral plasticity should 
also be considered when investigating linkages between avian 
morphology and locomotor behavior (see Diogo [2017] for a 
broader discussion). Phylogenetically informed investigations 
of multiple character systems that unite locomotor behavior, 
ontogeny, and morphology, as well as studies of avian loco-
motor biomechanics and community-level ecomorphological 
trends in extant and extinct birds, are all needed to overcome 
these problems (e.g., Danos et al., 2022; Dial, 2003a; Heers 
et al., 2011, 2014; Mitchell & Makovicky, 2014; Orkney et 
al., 2021; Ricklefs & Travis, 1980; Smith & Clarke, 2014; Xu 
et al., 2014).

Early gains of forelimb disparity in birds
Limb disparity accumulated differently between limbs during 
the evolution of birds (Figure 4). Analyses of temporal trends 
in limb disparity supported a scenario wherein the majority 
of forelimb disparity evolved quickly among major avian 
clades early on in the avian radiation (Figure 4). This pat-
tern was driven primarily by divergence in forelimb morphol-
ogy among flightless paleognath lineages (e.g., ostrich, emu, 

and rhea; see Figure 2A, Supplementary Figure S7). These 
results are consistent with patterns recovered from smaller 
datasets and narrower taxonomic focus or sampling that 
suggest changes in the hand occur early in avian evolution 
(Nebreda et al., 2020) and that forelimb morphology does 
not often change significantly with the origin of novel flight 
styles (Supplementary Figure S3, Table 1; also see Wang & 
Clarke, 2014, 2015). Yet, our results contrast with evolution-
ary patterns in limb morphospace previously reported from 
Mesozoic birds: stem avialans show similar forelimb disparity 
as non-volant theropods, whereas hind limb disparity diver-
sified in stem pygostylians (Benson & Choiniere, 2013). High 
phylogenetic signal across all traits (Supplementary Table S1) 
is consistent with previous findings that phylogenetic effects 
must be taken into account when investigating the relation-
ship between limb morphology and ecological or locomo-
tor signals (e.g., Baumgart et al., 2021; Nudds et al., 2007; 
Orkney et al., 2021; Stoessel et al., 2013; Wang & Clarke, 
2014).

Support for independent avian limb modules
We find support for stronger limb integration within fore-
limb and hind limb modules than between them (Figure 
5). This result is consistent with a recent study that used 
a high-density morphometric dataset but in fewer taxa 
(Orkney et al., 2021). This partial limb module decoupling 
is consistent with the observed differences in disparity accu-
mulation over time for the different limb modules (Figure 4). 
Interestingly, stylopod-autopod (humerus-carpometacarpus, 
femur-tarsometatarsus) and zeugopod-autopod covariances 
(radius/ulna-carpometacarpus, tibiotarsus-tarsometatar-
sus) were similar for each limb (Figure 5). This suggests 
potential developmental constraints, as limbs are homolo-
gous and involve similar genes/expression profiles (Young 
& Hallgrimsson, 2005). Stylopod-zeugopod covariances 
were significantly different across limbs (humerus-radius/
ulna, femur-tibiotarsus), as relative segment lengths in the 
forelimb were more strongly integrated (Figure 5). Forelimb 
traits showed significantly higher evolutionary rates than 
most hind limb traits, with the exception of the tarsometa-
tarsus (Figure 5). In the hind limb, the stylopod and zeugo-
pod elements (femur and tibiotarsus) evolved at the same 
rate, whereas for the forelimb the zeugopod (radius/ulna) 
evolved significantly faster than the humerus (Figure 5) and 
at the same rate as the autopods (carpometacarpals). The 
fastest evolving limb element was the hind limb autopod 
(tarsometatarsus). This different in rates between autopods 
might be reflective of stronger stabilizing selection on wing/
forelimb morphology due to flight requirements, whereas 
the tarsometatarsus is able to evolve more freely possibly 
due to relaxed selection (Lahti et al., 2009). Taken together, 
our finding of weaker evolutionary covariation among fore-
limb and hind limb modules than within them is consistent 
with recent work using geometric morphometrics (Orkney 
et al., 2021) and work by previous authors who found no 
support for morphological integration between serial limb 
homologues (e.g., humerus and femur) in a sample of 174 
specimens of 7 bird species (Bell et al., 2011). These results 
support the hypothesis put forward by Gatesy & Dial 
(1996) that limb modularity may have enabled differential 
evolutionary elaboration among modules, facilitating mor-
phological and locomotor disparity in birds.
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Conclusion
Extant avian clades that display higher disparity in locomo-
tor behaviors show greater limb disparity. Furthermore, evo-
lutionary trends in disparity differed between the forelimb 
and hind limb. Forelimb disparity evolved rapidly among 
clades early in avian evolution, whereas hind limb disparity 
diversified within rather than among clades. Phylogenetic 
effects are a significant factor in explaining the variation 
observed in avian limb morphology; comparative study of 
avian limbs should incorporate phylogeny. Avian forelimbs 
and hind limbs show different evolutionary rates, and evo-
lutionary changes in one locomotor module do not closely 
correspond to predictable changes in the other module 
when considered across birds as a whole. These findings, in 
concert, support the hypothesis that the origin of separate 
locomotor modules aided the evolution of avian locomotor 
disparity, and that morphological disparity accumulated dif-
ferently between modules. Although locomotor modularity 
may be linked to the evolution of diverse morphologies and, 
by extension, locomotor behaviors in birds, comparative 
examinations of morphological evolution following the ori-
gin of specific novel locomotor behaviors (e.g., wing-pro-
pelled diving, scansoriality) are necessary to understand 
how limb form and function evolved across different avian 
lineages.
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